Some presentations for $\overline {\Gamma }_0(N)$

Author:
Antonio Lascurain Orive

Journal:
Conform. Geom. Dyn. **6** (2002), 33-60

MSC (2000):
Primary 11F06, 20H05, 30F35, 51M10, 52C22; Secondary 13M05, 22E40

DOI:
https://doi.org/10.1090/S1088-4173-02-00073-5

Published electronically:
May 30, 2002

MathSciNet review:
1948848

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Some presentations of the Fuchsian groups defined by the Hecke congruence subgroups \[
\Gamma _{0}( N)\;=\; \left \{\begin {pmatrix} a& b c& d \end {pmatrix} \in SL(2,\mathbb {Z})\;\Big {|} \;\; c\equiv 0\;\; \text {mod}\; N \right \} \] are given. The first is one obtained by the Reidemeister-Schreier rewriting process, thereby completing and correcting Chuman’s work on the subject. The main result (Theorem 3) is the reduction of this huge presentation into another one which is simple and useful. In the process, $\mathbb {Z}_N$ is partitioned into three subsets that exhibit many cyclic and dual properties of its ring structure. For some cases, a *minimal* presentation derived from the Ford domains is given explicitly in terms of the units and its inverses.

- Alan F. Beardon,
*The geometry of discrete groups*, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR**698777** - Alan F. Beardon and Troels Jørgensen,
*Fundamental domains for finitely generated Kleinian groups*, Math. Scand.**36**(1975), 21–26. MR**387576**, DOI https://doi.org/10.7146/math.scand.a-11559 - Yasuhiro Chuman,
*Generators and relations of $\Gamma _{0}(N)$*, J. Math. Kyoto Univ.**13**(1973), 381–390. MR**348001**, DOI https://doi.org/10.1215/kjm/1250523378 - Ravi S. Kulkarni,
*An arithmetic-geometric method in the study of the subgroups of the modular group*, Amer. J. Math.**113**(1991), no. 6, 1053–1133. MR**1137534**, DOI https://doi.org/10.2307/2374900 - Antonio Lascurain Orive,
*Ford polygons for $\Gamma _0(N)$*, Bol. Soc. Mat. Mexicana (2)**39**(1994), no. 1-2, 1–18. MR**1338678** - Antonio Lascurain Orive,
*The shape of the Ford domains for $\Gamma _0(N)$*, Conform. Geom. Dyn.**3**(1999), 1–23. MR**1668275**, DOI https://doi.org/10.1090/S1088-4173-99-00030-2 - Joseph Lehner,
*Discontinuous groups and automorphic functions*, Mathematical Surveys, No. VIII, American Mathematical Society, Providence, R.I., 1964. MR**0164033** - Wilhelm Magnus, Abraham Karrass, and Donald Solitar,
*Combinatorial group theory*, Second revised edition, Dover Publications, Inc., New York, 1976. Presentations of groups in terms of generators and relations. MR**0422434**
Radamacher H. Radamacher, - Goro Shimura,
*Introduction to the arithmetic theory of automorphic functions*, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971. Kanô Memorial Lectures, No. 1. MR**0314766** - Bruno Schoeneberg,
*Elliptic modular functions: an introduction*, Springer-Verlag, New York-Heidelberg, 1974. Translated from the German by J. R. Smart and E. A. Schwandt; Die Grundlehren der mathematischen Wissenschaften, Band 203. MR**0412107**

*Uber die Erzeungenden von Kongruenzuntergruppen der Modulgruppe,*Ham. Abh.

**7**, pp.139-148, 1929.

Retrieve articles in *Conformal Geometry and Dynamics of the American Mathematical Society*
with MSC (2000):
11F06,
20H05,
30F35,
51M10,
52C22,
13M05,
22E40

Retrieve articles in all journals with MSC (2000): 11F06, 20H05, 30F35, 51M10, 52C22, 13M05, 22E40

Additional Information

**Antonio Lascurain Orive**

Affiliation:
Havre 101, Colonia Villa Verdun, Mexico D.F. 01810 Mexico

Email:
lasc@hp.fciencias.unam.mx

Received by editor(s):
January 8, 2001

Received by editor(s) in revised form:
April 11, 2002

Published electronically:
May 30, 2002

Article copyright:
© Copyright 2002
American Mathematical Society